Virus-Host and CRISPR Dynamics in Archaea-Dominated Hypersaline Lake Tyrrell, Victoria, Australia
نویسندگان
چکیده
The study of natural archaeal assemblages requires community context, namely, a concurrent assessment of the dynamics of archaeal, bacterial, and viral populations. Here, we use filter size-resolved metagenomic analyses to report the dynamics of 101 archaeal and bacterial OTUs and 140 viral populations across 17 samples collected over different timescales from 2007-2010 from Australian hypersaline Lake Tyrrell (LT). All samples were dominated by Archaea (75-95%). Archaeal, bacterial, and viral populations were found to be dynamic on timescales of months to years, and different viral assemblages were present in planktonic, relative to host-associated (active and provirus) size fractions. Analyses of clustered regularly interspaced short palindromic repeat (CRISPR) regions indicate that both rare and abundant viruses were targeted, primarily by lower abundance hosts. Although very few spacers had hits to the NCBI nr database or to the 140 LT viral populations, 21% had hits to unassembled LT viral concentrate reads. This suggests local adaptation to LT-specific viruses and/or undersampling of haloviral assemblages in public databases, along with successful CRISPR-mediated maintenance of viral populations at abundances low enough to preclude genomic assembly. This is the first metagenomic report evaluating widespread archaeal dynamics at the population level on short timescales in a hypersaline system.
منابع مشابه
Draft Genome Sequence of “Candidatus Halobonum tyrrellensis” Strain G22, Isolated from the Hypersaline Waters of Lake Tyrrell, Australia
We report the draft 3.675-Mbp genome sequence of "Candidatus Halobonum tyrrellensis" strain G22, a novel halophilic archaeon isolated from the surface hypersaline waters of Lake Tyrrell, Australia. The availability of the first genome from the "Candidatus Halobonum" genus provides a new genomic resource for the comparative genomic analysis of halophilic Archaea.
متن کاملDe Novo Sequences of Haloquadratum walsbyi from Lake Tyrrell, Australia, Reveal a Variable Genomic Landscape
Hypersaline systems near salt saturation levels represent an extreme environment, in which organisms grow and survive near the limits of life. One of the abundant members of the microbial communities in hypersaline systems is the square archaeon, Haloquadratum walsbyi. Utilizing a short-read metagenome from Lake Tyrrell, a hypersaline ecosystem in Victoria, Australia, we performed a comparative...
متن کاملAssembly-Driven Community Genomics of a Hypersaline Microbial Ecosystem
Microbial populations inhabiting a natural hypersaline lake ecosystem in Lake Tyrrell, Victoria, Australia, have been characterized using deep metagenomic sampling, iterative de novo assembly, and multidimensional phylogenetic binning. Composite genomes representing habitat-specific microbial populations were reconstructed for eleven different archaea and one bacterium, comprising between 0.6 a...
متن کاملCharacterization of eukaryotic microbial diversity in hypersaline Lake Tyrrell, Australia
This study describes the community structure of the microbial eukaryotic community from hypersaline Lake Tyrrell, Australia, using near full length 18S rRNA sequences. Water samples were taken in both summer and winter over a 4-year period. The extent of eukaryotic diversity detected was low, with only 35 unique phylotypes using a 97% sequence similarity threshold. The water samples were domina...
متن کاملDynamic viral populations in hypersaline systems as revealed by metagenomic assembly.
Viruses of the Bacteria and Archaea play important roles in microbial evolution and ecology, and yet viral dynamics in natural systems remain poorly understood. Here, we created de novo assemblies from 6.4 Gbp of metagenomic sequence from eight community viral concentrate samples, collected from 12 h to 3 years apart from hypersaline Lake Tyrrell (LT), Victoria, Australia. Through extensive man...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
دوره 2013 شماره
صفحات -
تاریخ انتشار 2013